Chapter 2 Reasoning and Proof

Section 6 Proving Statements about Angles

GOAL 1: Congruence of Angles

In Lesson 2.5, you proved segment relationships. In this lesson you will prove statements about angles.

THEOREM

THEOREM 2.2 Properties of Angle Congruence

Angle congruence is reflexive, symmetric, and transitive.

Here are some examples.

REFLEXIVE For any angle A, $\angle A \cong \angle A$.

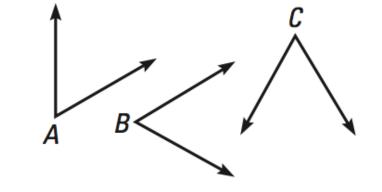
SYMMETRIC If $\angle A \cong \angle B$, then $\angle B \cong \angle A$.

TRANSITIVE If $\angle A \cong \angle B$ and $\angle B \cong \angle C$, then $\angle A \cong \angle C$.

Example 1: Transitive Property of Angle Congruence

Prove the Transitive Property of Congruence for Angles.

GIVEN
$$\triangleright \angle A \cong \angle B$$
,
 $\angle B \cong \angle C$



PROVE $\triangleright \angle A \cong \angle C$

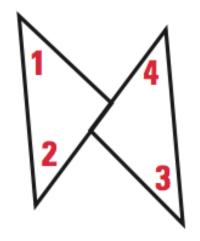
Statements	Reasons
1. $\angle A \cong \angle B$,	1. Given
$\angle B \cong \angle C$	
$-2. m \angle A = m \angle B$	2. Definition of congruent angles
3. $m \angle B = m \angle C$	3. Definition of congruent angles
$4. \ m \angle A = m \angle C$	4. Transitive property of equality
5. $\angle A \cong \angle C$	5. Definition of congruent angles

Example 2: Using the Transitive Property

This two-column proof uses the Transitive Property.

GIVEN
$$m \angle 3 = 40^{\circ}, \angle 1 \cong \angle 2, \angle 2 \cong \angle 3$$

PROVE
$$\triangleright$$
 $m \angle 1 = 40^{\circ}$



StatementsReasons1. $m \angle 3 = 40^{\circ}$, $\angle 1 \cong \angle 2$, $\angle 2 \cong \angle 3$ 1. Given2. $\angle 1 \cong \angle 3$ 2. Transitive Property of Congruence3. $m \angle 1 = m \angle 3$ 3. Definition of congruent angles4. $m \angle 1 = 40^{\circ}$ 4. Substitution property of equality

THEOREM

THEOREM 2.3 Right Angle Congruence Theorem

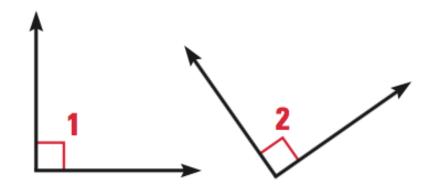
All right angles are congruent.

Example 3: Proving Theorem 2.3

You can prove Theorem 2.3 as shown.

GIVEN \triangleright $\angle 1$ and $\angle 2$ are right angles

PROVE
$$\triangleright$$
 $\angle 1 \cong \angle 2$



Statements	Reasons
1. $\angle 1$ and $\angle 2$ are right angles	1. Given
2. $m \angle 1 = 90^{\circ}, m \angle 2 = 90^{\circ}$	2. Definition of right angle
3. $m \angle 1 = m \angle 2$	3. Transitive property of equality
4. ∠1 ≅ ∠2	4. Definition of congruent angles

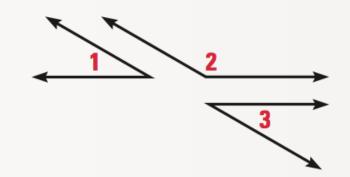
GOAL 2: Properties of Special Pairs of Angles

THEOREMS

THEOREM 2.4 Congruent Supplements Theorem

If two angles are supplementary to the same angle (or to congruent angles) then they are congruent.

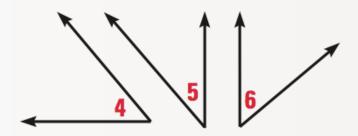
If
$$m \angle 1 + m \angle 2 = 180^{\circ}$$
 and $m \angle 2 + m \angle 3 = 180^{\circ}$, then $\angle 1 \cong \angle 3$.



THEOREM 2.5 Congruent Complements Theorem

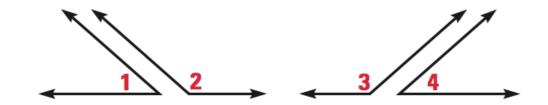
If two angles are complementary to the same angle (or to congruent angles) then the two angles are congruent.

If
$$m\angle 4 + m\angle 5 = 90^{\circ}$$
 and $m\angle 5 + m\angle 6 = 90^{\circ}$, then $\angle 4 \cong \angle 6$.



Example 4: Proving Theorem 2.4

GIVEN \triangleright $\angle 1$ and $\angle 2$ are supplements, $\angle 3$ and $\angle 4$ are supplements, $\angle 1 \cong \angle 4$



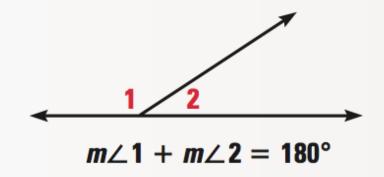
PROVE
$$\triangleright$$
 $\angle 2 \cong \angle 3$

Statements	Reasons
1. $\angle 1$ and $\angle 2$ are supplements, $\angle 3$ and $\angle 4$ are supplements, $\angle 1 \cong \angle 4$	1. Given
2. $m \angle 1 + m \angle 2 = 180^{\circ}$ $m \angle 3 + m \angle 4 = 180^{\circ}$	2. Definition of supplementary angles
3. $m \angle 1 + m \angle 2 = m \angle 3 + m \angle 4$	3. Transitive property of equality
$4. m \angle 1 = m \angle 4$	4. Definition of congruent angles
5. $m \angle 1 + m \angle 2 = m \angle 3 + m \angle 1$	5. Substitution property of equality
6. $m \angle 2 = m \angle 3$	6. Subtraction property of equality
7. $\angle 2 \cong \angle 3$	7. Definition of congruent angles

POSTULATE

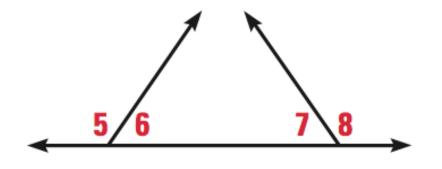
POSTULATE 12 Linear Pair Postulate

If two angles form a linear pair, then they are supplementary.



Example 5: Using Linear Pairs

In the diagram, $m \angle 8 = m \angle 5$ and $m \angle 5 = 125^{\circ}$. Explain how to show $m \angle 7 = 55^{\circ}$.



$$m<8 = m<5 \& m<5 = 125* \rightarrow m<8 = 125*$$

 $<7 \& <8 \rightarrow linear pair \rightarrow 180 - 125 = 55 \rightarrow m<7 = 55*$

THEOREM

THEOREM 2.6 Vertical Angles Theorem

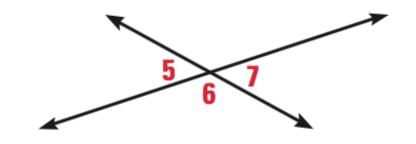
Vertical angles are congruent.

$$\angle 1 \cong \angle 3$$
, $\angle 2 \cong \angle 4$

Example 6: Proving Theorem 2.6

GIVEN \triangleright $\angle 5$ and $\angle 6$ are a linear pair, $\angle 6$ and $\angle 7$ are a linear pair

PROVE \triangleright $\angle 5 \cong \angle 7$



Statements	Reasons
 ∠5 and ∠6 are a linear pair, ∠6 and ∠7 are a linear pair 	1. Given
2. $\angle 5$ and $\angle 6$ are supplementary, $\angle 6$ and $\angle 7$ are supplementary	2. Linear Pair Postulate
3. ∠5 ≅ ∠7	3. Congruent Supplements Theorem